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Abstract— This paper presents a feature-based registration
for 3D environments using mobile robots. The developed 3D
laser scanner with custom hardware setup is able to scan
both indoor and outdoor. For the map registration a nonlinear
variant of the Iterative Closest Point (ICP) algorithm was used
with initial alignment from the correspondences given by the
features of the scenes. The initial alignment was determined
using a set of key-points and the features of the keypoints
in order to reduce the computational time and to ensure a
robust estimation. Considering the increasing interest in 3D
navigation for mobile robots, our aim was to use the created
maps for both indoor and outdoor navigation purposes. Several
maps were built by merging point clouds while our method was
tested for a wide range of datasets including urban and office
environments.

I. INTRODUCTION

The demand for 3D perception and action for mobile
robots increased rapidly in the recent years. There are
several applications in which the representation of complex
environments is essential including architecture, automotive,
mining and piping systems inside factories [?], [?]. Off-line
3D data is required for applications such as architecture or
factory design. These datasets can be conveniently acquired
using 3D scans from multiple views. Other applications like
autonomous navigation may require real-time data from the
environment [?].

Several variants for the spatial perception of environments
exist today including stereo cameras, laser scanners, time-
of-flight cameras, ultrasonic rangers or the recently adopted
structured light sensors [?]. Each of these sensors has its
own limitation regarding the range, precision or robustness
of measurements. Although computer vision techniques in-
creased in performance, including stereo image processing
[?], the data collected from laser range finders is more robust
and texture independent.

Planar laser scanners are popular in the field of robotics
due to their high speed and precision. They are mainly
used for 2D mapping and navigation purposes, although by
augmenting the two-axial motion with an additional degree
of freedom, an accurate 3D scanner can be obtained [?].
Several variants may be used for the sweeping of the 2D
laser, including the moving of the base platform during the
scan [?] or by means of a mechanical actuator which is
controlled independently from the vehicle displacement [?].
For applications in the field of navigation, the scans taken
from different positions are useful only if registered, i.e.
merged in a common coordinate frame in order to have a
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map of the surrounding environment. The registration can
be interpreted also as an optimization problem of the spatial
transformations among different overlapping scans [?].

The registration process is highly dependent on the char-
acteristics of the measured data including noise, sparseness
and robustness. Thus several techniques were developed
for registration in different environments such as geometric
feature-based registration for urban scenes [?] or raw point
cloud registration for cluttered environments [?], [?]. The
registration is also possible based on the position of the
moving robot, but due to the uncertainty in the robot’s
localization the error accumulated during the displacement
may corrupt the registration. A common approach is to use
distinctive features for a set of points between consecutive
scans for initial alignment and the ICP algorithm [?] for
the fine-tuning of the registration. A similar version of this
approach was also adopted for the paper at hand.

In this paper several types of data were tested for the
registration problem with different key-points and feature
descriptors. The main scope of the paper was to determine
a suitable setup for the map registration benchmarking dif-
ferent combination of key-points and feature descriptors. In
Section II the hardware and software details regarding the
custom 3D laser scanner are presented. Section III describes
the feature-based registration techniques used for the merging
of scans and testing of different techniques. We conclude in
Section IV and present our future research directions.

II. 3D LASER SCANER ON A MOBILE ROBOT

This section presents the design and construction details
regarding the 3D laser scanner module mounted on a mobile
robot platform. This module is based on a commercial Sick
LMS200 2D laser for which an auxiliary mechanical part
was constructed in order to earn a 3rd degree of freedom.
The actuated laser scanner is mounted on a P3-AT mobile
robot and data acquisition is performed using the ROS [?]
environment.

A. Actuated 2D Laser Range Finder

The key component of the 3D sensor is the 2D com-
mercial laser scanner for which a custom rotary platform
was designed. There are several possibilities to rotate the
laser scanner, i.e. around the yaw, pitch or roll axis, thus
achieving a yawing, pitching or rolling 3D sensor [?]. Each
of these three setups has its own advantage and disadvantage.
As for mobile robots the most common approach is the
pitching scan, which was adopted for the current system. The
mechanical design and prototype are presented in Figure 1.
The design shown has two parts: one fixed containing the



driving servo motor (left) and the rotation encoder (right);
and the mobile rotary on which the Sick LMS200 is placed.
The prototype was built using an iron frame both for the
fixed and mobile part.

Fig. 1. The design and prototype of the actuated 3D sensor.

For the driving motor a Hitachi 12V servo motor was
chosen with a minimum rotation step of 0.45◦, while for the
rotation sensor a high resolution encoder was considered.
The motor control and serial connection to the PC were
solved using an AVR micro-controller based on the Cerebot2
electronic board. This type of board as well as the other
mechanical and electrical components of the prototype are
low cost products. The Sick LMS200 has a depth resolution
of 1cm and an angular resolution of 0.25◦, 0.5◦, or 1◦

depending on the configuration. The scanning cone of the
device can be set to either 100◦ or 180◦ depending on the
actual needs, while the maximum range of readings is 80m.
The scanning time is around 15ms and additional time is
required to send the data to the PC at 9600, 19200, 38400 or
500000 kb/s. Thus a complete 3D scan may require seconds
depending on the actual configuration used for the scanning
process.

For a scanner with pitching actuator the 3rd dimension
of a point is given from the pitch angle. The coordinates
of one 3D point result from the distance to the surface, the
yaw angle of the beam, and the pitch angle of the actuated
mechanical part. Thus a scanned point can be represented as
a tuple of the form (ρi; θi, γi) where ρi represents the depth
information from the laser scanner and θi, γi the yaw and
pitch measurements. The forward kinematic transformation
taken as original coordinate system to the laser base link is
given by:
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where p is a point in the Cartesian space with the coordinates
xn, yn and zn.

In (1) the displacement between the center of the robot
and the 3D sensor was not taken into account. This can
be introduced into the mathematical model by means of
an additional translation term. Also the error induced by
the misalignment between the rotation axis of the laser
mirror and the pitching axis is not taken into account. This
introduces a systematic error which can be detected by

experimental identification and compensated by a constant
term in (1). A more detailed discussion regarding the error
budget can be found in [?].

B. Software Framework for the 3D Scanner

When dealing with a wide variety of experiments it is
important to have a well designed software architecture. This
can reduce substantially the development time by ensuring
code reuse and robustness of software modules. First the
general concepts are presented followed by the design phase,
then the involved components and details of the integration
stage.

Main idea for the design was to obtain a balance between
the maintainability of the packages and the flexibility for
code reuse. The adapted solution in this case was the Domain
Driven Design (DDD) described in [?].

Fig. 2. Overview of the 3D scanner system.

The different layers and the relationship between them is
presented in Figure 2. The domain layer contains the core of
the package which for the map registration is the registration
algorithm itself (e.g. non-linear ICP). It implements the inter-
faces to the application layer, data repositories and message
endpoints. The main role of the application service layers is
the delegation and execution of tasks. It is a middle layer
between the core and the user interface without the knowl-
edge about the data representation and the communication
details within the package. The communication with external
data sources is done via the data repository layer, while the
message endpoints specify the communication internally and
externally to the package. All layers have their own test unit
defined. The adopted solution for unit tests is based on the
test doubles, i.e. stub objects, which act as the other packages
during the test. This may be useful for larger projects to
separate the testing phase for different layers [?].

Several components were developed for the experiments
in different computer languages like C++, Python or Matlab,
thus it was important to have cross platform libraries which
could be merged into a single application. The main pro-
gramming language was C++ on a Linux platform within the
Robotic Operation System (ROS) [?] proved to be a good
choice for transparently integrating the different hardware
and software modules.



III. MAP REGISTRATION
Several range scans are necessary in order to build a 3D

elevation map of the environment. To use these scans as
a coherent dataset, they have to be unified in a common
coordinate frame. Unless the position and orientation of
the mapping robot is accurately known, the range scan
registration needs to be done using specialized algorithms.
Since in our case the robot position could not be determined
with a sufficient accuracy between the measurement steps,
the registration algorithms were employed for creating the
elevation maps.

A. 3D Data Acquisition

The laser scanner presented in Figure 1 was mounted on
a P3-AT mobile robot in order to perform both indoor and
outdoor scans as it can be seen in Figure 3. The scan area
was of 180◦(h) x 100◦(v) with a horizontal resolution of 361
and a vertical one with 200 steps. This configuration ensured
an optimal resolution and data density in the point cloud for
further data processing. The scanning of environment with
the mobile robot was performed in a stop-scan-go fashion, a
single scan taking up to 60 seconds depending on the used
configuration. All the measured data was integrated in the
ROS environment where each logging was timestamped for
an easier off-line processing.

Fig. 3. The 3D scanner on the mobile robot platform.

B. ICP-Based Registration

The registration problem can also be viewed as the
optimization of a cost function describing the quality of
alignment between different scans. The algorithm determines
the rigid transformation which minimizes this cost function
[?]. The type of algorithm applied for the frame alignment
strongly depends on the measured dataset type. For the 3D
laser scans the Iterative Closest Point (ICP) and derivatives
are popular in the field of robotics [?], [?], [?]. The ICP
computes the rigid transformation which minimizes the dis-
tance among two point sets by associating a point from

one frame to the closed point in the target frame. The
transformation between two independently acquired sets of
3D points consists of two components, a rotation R and a
translation t. Correspondence points are iteratively searched
from the model set of points M (with |M | = Nm) in the
dataset D (with |D| = Nd). In case of a valid correspondence
we need the transformations R and t which minimize the
distance between the two points as follows:

E(R, t) =

Nm∑
i=1

Nd∑
j=1

wi,j ||mi − (Rdj + t)||2 (2)

where wi,j is assigned 1 if a valid correspondence is found
between the ith point from M denoted with mi and the jth
point from D denoted with dj .

Different variants were developed in order to increase the
robustness and the performance of the algorithm especially
for computing the rotational transformation term, which
introduces a non-linear term in the minimization problem.
A comprehensive overview and qualitative evaluation of
different approaches for the registration problem can be
found in [?].

A common approach for boosting the ICP robustness
is the augmentation of the points with additional features
like point color, geometric features or point histograms
[?]. This transposes the optimization problem in a higher
order dimensional space search. These features are usually
computed only for a certain subset of interest points from
the original point cloud, i.e. keypoints in order to reduce
the computational effort and enhance robustness. The use
of keypoints is to enable the efficient comparison between
different data regions. Our approach for the data registration
is based on the correspondence estimation for the extracted
keypoint features.

C. 3D Keypoints and Descriptors

There are several possibilities for extracting interest points
and descriptors from 2D images including the popular
SIFT (Scale Invariant Feature Transform) [?] or the SURF
(Speeded Up Robust Features) [?] features. Unfortunately,
these rely on local gradients from a unique orientation and
therefore are not directly applicable for our approach with
3D data, however some concepts may be inherited from the
2D domain.

In this paper the Normal Aligned Radial Feature (NARF)
[?] keypoints were adopted for the extraction of interest
points from range images. This type of keypoint takes into
account the information about the boarders and surfaces,
ensures the detection from different perspectives and the
stability for the descriptor computation. The most important
parameter for the NARF extraction is the support size,
i.e. the diameter of the sphere in which the interest point
characteristics are determined [?]. In our case several values
for this parameter were tested in order to gain a sufficient
number of keypoints for different types of datasets.

After the selection of keypoints, the specific properties are
determined, meaning the descriptors for the set of extracted



keypoints. The role of the descriptors is to efficiently com-
pare for discrimination between two selected points. There
are several approaches for the descriptors, a part of them
being invariant to the rotation around the normal, like in
the case of the NARF descriptor [?] or even complete 3D
orientation invariant such as the Fast Point Feature Histogram
(FPFH) [?].

For our approach we used the optimized version of the
FPFH in order to augment the three dimensional space
with pose-invariant local features and also tested the NARF
descriptors with Manhattan metrics for the same set of
keypoints. To compare the two set of descriptors, the runtime
(T) and the initial alignment fitness score (S) was computed
for indoor (Id) and outdoor (Od) datasets. The result of the
comparison is summarized in the Table I.

TABLE I
FEATURE DESCRIPTOR COMPARISON

Dataset TNARF TFPFH SNARF SFPFH

Idcluttered 0.19 45 0.071 0.032
Idplane 0.12 12 0.094 0.057

Od 0.11 26 0.083 0.044

The tests were performed on datasets containing around
10K points for which the extracted number of keypoints
was in the magnitude of 0.1K. For computing the runtime
the average values were considered for 10 consecutive runs
on an Intel Pentium 4 single core laptop running Ubuntu
Linux. Although the run-time of the proposed algorithm is
higher than some custom scenario based approaches like the
one presented in the work [?], the degree of generality of
the current approach is higher.

As observed, NARF descriptors are computed with sev-
eral orders of magnitude faster than FPFH descriptors, but
the latter approach is more robust in terms of estimating
correspondences. This would be also the case for scenes
which present less clutter or variation, thus having less
discriminative features, where the FPFH features ensured a
better correspondence between points.

D. Correspondence Estimation
The next step after determining the keypoints and the

descriptors is the estimation of correspondences between the
two sets of keypoints with descriptors. There are several
methods for the correspondence estimation, such as one-to-
one, back and forth or sample consensus based [?].

In our approach the correspondence estimation was per-
formed based on the geometric constrains of the selected
points. Thus the nearest point in the high dimensional de-
scriptor space was searched by using a kd-tree for enhancing
the search speed [?]. Unfortunately, the brute force search
does not ensure a coherent result for the correspondence esti-
mation problem having in many cases a large number of false
positives. For improving the estimation results, the filtering
based on sample consensus was adopted. This ensures that
after performing the one-to-one search for descriptors, only
those correspondences are kept which satisfy a geometrical
transformation constrain.

(a) (b)
Fig. 4. Initial correspondences (a) and filtered correspondences (b).

The comparison of the unfiltered and filtered set of cor-
respondences is shown in Figure 4 on an indoor dataset.
This dataset contains two scenes, the original one and the
one rotated with 45◦. As it can be observed, the initial,
unfiltered set of correspondences contains a large number
of false positives, which are eliminated, yielding a more
consistent estimation. The number of final correspondences
depend on the parameters used as a threshold for the sample
consensus rejection.

The complete ICP-based algorithm can be found in the
works [?], [?], therefore only a short overview is given,
with emphasis on the additional descriptor information for
the points. The ICP with initial alignment is described in
Algorithm 1. It has two input point clouds, Ps for the source
and Pt for the target. Step 1 and 2 extract the FPFH of the
source and target clouds (these two steps can be substituted
with arbitrary point cloud feature search), while in Step 3 the
initial alignment t∗ is determined after the correspondence
filtering. In the while statement in each iteration a set of
associations Ad is taken for which the best transformation
is determined. The loop exit conditions are related to the
error variation or to the maximum number of iterations both
specified as tuning parameters for the algorithm. Finally, the
algorithm returns the computed transformation between the
two datasets. Further details regarding the implementation
of the ICP with initial alignment based on sample consensus
can be found in [?].

Algorithm 1 ICP with initial alignment
Require: Ps, Pt

1: Fs = ComputeFPFH(Ps);
2: Ft = ComputeFPFH(Pt);
3: (t∗, Af ) = InitialAligment(Fs, Ft);
4: while (errordiff < ε) or (iter < itermax) do
5: Ad = getClosestPoints(t∗, Ps, Pt);
6: t∗ = argmin

(
1
|Ad|

∑
j∈Ad

wj |t(ps)− pt|2
)

;
7: end while
8: return t∗



Based on the discriminative power of the descriptors,
the initial alignment for the ICP can be solved using a
sample consensus based approach for the correspondence
estimation [?]. Further on, the initial alignment ensures a
faster convergence for the ICP, with less possibilities to get
into a local minimum at the optimization phase. This is
important from the multiple scan merging perspective.

The aligned map for the indoor environment is presented
in Figure 5, while results for the outdoor registration are
shown in Figure 6 and Figure 7. In both cases the registration
was performed using a pair alignment approach and the
FPFH descriptors for the computed NARF keypoints. The
initial alignment of the scans was performed based on
the filtered correspondences of the FPFH descriptors. This
alignment was then used for the ICP refinement, computed
on the last pair of data in the alignment loop.

Fig. 5. Example of registered indoor map.

Fig. 6. An outdoor environment map with human obstacle.

For both scenarios the error convergence of the ICP algo-
rithm was monotonically decreasing, a suitable registration
error was achieved in less than 100 iterations. This scenario
was obtained by considering the maximum distance between
two neighbor points to be less than 1m.

IV. CONCLUSIONS

This paper presents a custom 3D laser finder for indoor
and outdoor environment mapping using a mobile robot.

Fig. 7. An large scale outdoor environment map.

We built environment maps using a pairwise registration of
3D point clouds based on an enhanced ICP approach using
different keypoints and local descriptors for the keypoints.
The correspondences obtained are filtered in order to obtain
a reliable initial alignment for the initialization of the ICP
registration phase.

As future extensions, we plan to combine the current
approach from the laser scanner information with data from
stereo camera and from projected light sensor. For the regis-
tration part, we propose to implement the global optimization
within a Simultaneous Localization And Mapping (SLAM)
application.
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